500 research outputs found

    A Novel Model for Capturing the Multiple Representations during Team Problem Solving based on Verbal Discussions

    Full text link
    Improving the effectiveness of problem solving in teams is an important research topic due to the complexity and cross-disciplinary nature of modern problems. It is unlikely that an individual can successfully tackle alone such problems. Increasing team effectiveness is challenging due to the many entangled cognitive, motivational, social, and emotional aspects specific to teamwork. It is often difficult to reliably identify the characteristics that make a team efficient or those that are main hurdles in teamwork. Moreover, experiments often produced conflicting results, which suggests possibly incorrect modeling of team activities and/or hypothesis formulation errors. Automated data acquisition followed by analytics based on models for teamwork is a intriguing option to alleviate some of the limitations. This paper proposes a model describing an individual's activities during team problem solving. Verbal discussions between team members are used to build models. The model captures the multiple images (representations) created and used by an individual during solving as well as the solving activities utilizing these images. Then, a team model includes the interacting models of the members. Case studies showed that the model can highlight differences between teams depending on the nature of the individual work before teamwork starts. Inefficiencies in teamwork can be also pointed out using the model.Comment: 24 pages, 7 figure

    Assessing the utilization of high-resolution 2-field HLA typing in solid organ transplantation.

    Get PDF
    HLA typing in solid organ transplantation (SOT) is necessary for determining HLA-matching status between donor-recipient pairs and assessing patients\u27 anti-HLA antibody profiles. Histocompatibility has traditionally been evaluated based on serologically defined HLA antigens. The evolution of HLA typing and antibody identification technologies, however, has revealed many limitations with using serologic equivalents for assessing compatibility in SOT. The significant improvements to HLA typing introduced by next-generation sequencing (NGS) require an assessment of the impact of this technology on SOT. We have assessed the role of high-resolution 2-field HLA typing (HR-2F) in SOT by retrospectively evaluating NGS-typed pre- and post-SOT cases. HR-2F typing was highly instructive or necessary in 41% (156/385) of the cases. Several pre- and posttransplant scenarios were identified as being better served by HR-2F typing. Five different categories are presented with specific case examples. The experience of another center (Temple University Hospital) is also included, whereby 21% of the cases required HR-2F typing by Sanger sequencing, as supported by other legacy methods, to properly address posttransplant anti-HLA antibody issues

    Soil microbial communities in diverse agroecosystems exposed to the herbicide glyphosate

    Get PDF
    © 2020 American Society for Microbiology. Despite glyphosate\u27s wide use for weed control in agriculture, questions remain about the herbicide\u27s effect on soil microbial communities. The existing scientific literature contains conflicting results, from no observable effect of glyphosate to the enrichment of agricultural pathogens such as Fusarium spp. We conducted a comprehensive field-based study to compare the microbial communities on the roots of plants that received a foliar application of glyphosate to adjacent plants that did not. The 2-year study was conducted in Beltsville, MD, and Stoneville, MS, with corn and soybean crops grown in a variety of organic and conventional farming systems. By sequencing environmental metabarcode amplicons, the prokaryotic and fungal communities were described, along with chemical and physical properties of the soil. Sections of corn and soybean roots were plated to screen for the presence of plant pathogens. Geography, farming system, and season were significant factors determining the composition of fungal and prokaryotic communities. Plots treated with glyphosate did not differ from untreated plots in overall microbial community composition after controlling for other factors. We did not detect an effect of glyphosate treatment on the relative abundance of organisms such as Fusarium spp

    A coordination model for interactive components

    Get PDF
    Although presented with a variety of ‘flavours’, the notion of an interactor, as an abstract characterisation of an interactive com- ponent, is well-known in the area of formal modelling techniques for interactive systems. This paper replaces traditional, hierarchical, ‘tree-like’ composition of interactors in the specification of complex interactive sys- tems, by their exogenous coordination through general-purpose software connectors which assure the flow of data and the meet of synchronisation constraints. The paper’s technical contribution is twofold. First a modal logic is defined to express behavioural properties of both interactors and connectors. The logic is new in the sense that its modalities are indexed by fragments of sets of actions to cater for action co-occurrence. Then, this logic is used in the specification of both interactors and coordination layers which orchestrate their interconnection

    Bioaccessibility Tests Accurately Estimate Bioavailability Of Lead To Quail

    Get PDF
    Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb

    Ethnobotany and antimicrobial peptide from plants of Solanaceae family: An update and future prospect

    Get PDF
    The Solanaceae is an important plant family that has been playing an essential role in traditional medicine and human nutrition. Members of the Solanaceae are rich in bioactive metabolites and have been used by different tribes around the world for ages. Antimicrobial peptides (AMPs) from plants have drawn great interest in recent years and raised new hope for developing new antimicrobial agents for meeting the challenges of antibiotic resistance. This review aims to summarize the reported AMPs from plants of the Solanaceae with possible molecular mechanisms of action as well as to correlate their traditional uses with reported antimicrobial actions of the peptides. A systematic literature study was conducted using different databases until August 2019 based on the inclusion and exclusion criteria. According to literature, a variety of AMPs including defensins, protease inhibitor, lectins, thionin-like peptides, vicilin-like peptides, and snaking were isolated from plants of the Solanaceae and were involved in their defense mechanism. These peptides exhibited significant antibacterial, antifungal and antiviral activity against organisms for both plant and human host. Brugmansia, Capsicum, Datura, Nicotiana, Salpichora, Solanum, Petunia, and Withania are the most commonly studied genera for AMPs. Among these genera, Capsicum and the Solanum ranked top according to the total number of studies (35%–38% studies) for different AMPs. The mechanisms of action of the reported AMPs from Solanaceae was not any new rather similar to other reported AMPs including alteration of membrane potential and permeability, membrane pore formation, and cell aggregation. Whereas, induction of cell membrane permiabilization, inhibition of germination and alteration of hyphal growth were reported as mechanisms of antifungal activity. Plants of the Solanaceae have been used traditionally as antimicrobial, insecticidal, and antiinfectious agents, and as poisons. The reported AMPs from the Solanaceae are the products of chemical shields to protect plants from microorganisms and pests which unfold an obvious link with their traditional medicinal use. In summary, it is evident that AMPs from this family possess considerable antimicrobial activity against a wide range of bacterial and fungal pathogens and can be regarded as a potential source for lead molecules to develop new antimicrobial agents
    • …
    corecore